3.92 \(\int \frac{\tan (c+d x) (A+B \tan (c+d x))}{\sqrt{a+i a \tan (c+d x)}} \, dx\)

Optimal. Leaf size=109 \[ -\frac{A+i B}{d \sqrt{a+i a \tan (c+d x)}}-\frac{(A-i B) \tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{2} \sqrt{a}}\right )}{\sqrt{2} \sqrt{a} d}-\frac{2 i B \sqrt{a+i a \tan (c+d x)}}{a d} \]

[Out]

-(((A - I*B)*ArcTanh[Sqrt[a + I*a*Tan[c + d*x]]/(Sqrt[2]*Sqrt[a])])/(Sqrt[2]*Sqrt[a]*d)) - (A + I*B)/(d*Sqrt[a
 + I*a*Tan[c + d*x]]) - ((2*I)*B*Sqrt[a + I*a*Tan[c + d*x]])/(a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.14114, antiderivative size = 109, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 34, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.118, Rules used = {3592, 3526, 3480, 206} \[ -\frac{A+i B}{d \sqrt{a+i a \tan (c+d x)}}-\frac{(A-i B) \tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{2} \sqrt{a}}\right )}{\sqrt{2} \sqrt{a} d}-\frac{2 i B \sqrt{a+i a \tan (c+d x)}}{a d} \]

Antiderivative was successfully verified.

[In]

Int[(Tan[c + d*x]*(A + B*Tan[c + d*x]))/Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

-(((A - I*B)*ArcTanh[Sqrt[a + I*a*Tan[c + d*x]]/(Sqrt[2]*Sqrt[a])])/(Sqrt[2]*Sqrt[a]*d)) - (A + I*B)/(d*Sqrt[a
 + I*a*Tan[c + d*x]]) - ((2*I)*B*Sqrt[a + I*a*Tan[c + d*x]])/(a*d)

Rule 3592

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(B*d*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Int[(a + b*Tan[e
 + f*x])^m*Simp[A*c - B*d + (B*c + A*d)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b
*c - a*d, 0] &&  !LeQ[m, -1]

Rule 3526

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[((
b*c - a*d)*(a + b*Tan[e + f*x])^m)/(2*a*f*m), x] + Dist[(b*c + a*d)/(2*a*b), Int[(a + b*Tan[e + f*x])^(m + 1),
 x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0]

Rule 3480

Int[Sqrt[(a_) + (b_.)*tan[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[(-2*b)/d, Subst[Int[1/(2*a - x^2), x], x, Sq
rt[a + b*Tan[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\tan (c+d x) (A+B \tan (c+d x))}{\sqrt{a+i a \tan (c+d x)}} \, dx &=-\frac{2 i B \sqrt{a+i a \tan (c+d x)}}{a d}+\int \frac{-B+A \tan (c+d x)}{\sqrt{a+i a \tan (c+d x)}} \, dx\\ &=-\frac{A+i B}{d \sqrt{a+i a \tan (c+d x)}}-\frac{2 i B \sqrt{a+i a \tan (c+d x)}}{a d}-\frac{(i A+B) \int \sqrt{a+i a \tan (c+d x)} \, dx}{2 a}\\ &=-\frac{A+i B}{d \sqrt{a+i a \tan (c+d x)}}-\frac{2 i B \sqrt{a+i a \tan (c+d x)}}{a d}-\frac{(A-i B) \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,\sqrt{a+i a \tan (c+d x)}\right )}{d}\\ &=-\frac{(A-i B) \tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{2} \sqrt{a}}\right )}{\sqrt{2} \sqrt{a} d}-\frac{A+i B}{d \sqrt{a+i a \tan (c+d x)}}-\frac{2 i B \sqrt{a+i a \tan (c+d x)}}{a d}\\ \end{align*}

Mathematica [A]  time = 1.37876, size = 140, normalized size = 1.28 \[ -\frac{e^{-2 i (c+d x)} \sqrt{\frac{a e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}} \left ((A-i B) e^{i (c+d x)} \sqrt{1+e^{2 i (c+d x)}} \sinh ^{-1}\left (e^{i (c+d x)}\right )+A \left (1+e^{2 i (c+d x)}\right )+i B \left (1+5 e^{2 i (c+d x)}\right )\right )}{\sqrt{2} a d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Tan[c + d*x]*(A + B*Tan[c + d*x]))/Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

-((Sqrt[(a*E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]*(A*(1 + E^((2*I)*(c + d*x))) + I*B*(1 + 5*E^((2*I)*
(c + d*x))) + (A - I*B)*E^(I*(c + d*x))*Sqrt[1 + E^((2*I)*(c + d*x))]*ArcSinh[E^(I*(c + d*x))]))/(Sqrt[2]*a*d*
E^((2*I)*(c + d*x))))

________________________________________________________________________________________

Maple [A]  time = 0.054, size = 88, normalized size = 0.8 \begin{align*} 2\,{\frac{1}{ad} \left ( -iB\sqrt{a+ia\tan \left ( dx+c \right ) }-1/2\,{\frac{a \left ( A+iB \right ) }{\sqrt{a+ia\tan \left ( dx+c \right ) }}}-1/4\,\sqrt{a} \left ( A-iB \right ) \sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{a+ia\tan \left ( dx+c \right ) }\sqrt{2}}{\sqrt{a}}} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(1/2),x)

[Out]

2/d/a*(-I*B*(a+I*a*tan(d*x+c))^(1/2)-1/2*a*(A+I*B)/(a+I*a*tan(d*x+c))^(1/2)-1/4*a^(1/2)*(A-I*B)*2^(1/2)*arctan
h(1/2*(a+I*a*tan(d*x+c))^(1/2)*2^(1/2)/a^(1/2)))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.00163, size = 913, normalized size = 8.38 \begin{align*} -\frac{{\left (a d \sqrt{\frac{2 \, A^{2} - 4 i \, A B - 2 \, B^{2}}{a d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} \log \left (\frac{{\left (i \, a d \sqrt{\frac{2 \, A^{2} - 4 i \, A B - 2 \, B^{2}}{a d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} + \sqrt{2}{\left ({\left (i \, A + B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} + i \, A + B\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{i \, A + B}\right ) - a d \sqrt{\frac{2 \, A^{2} - 4 i \, A B - 2 \, B^{2}}{a d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} \log \left (\frac{{\left (-i \, a d \sqrt{\frac{2 \, A^{2} - 4 i \, A B - 2 \, B^{2}}{a d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} + \sqrt{2}{\left ({\left (i \, A + B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} + i \, A + B\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{i \, A + B}\right ) + 2 \, \sqrt{2}{\left ({\left (A + 5 i \, B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} + A + i \, B\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{4 \, a d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

-1/4*(a*d*sqrt((2*A^2 - 4*I*A*B - 2*B^2)/(a*d^2))*e^(2*I*d*x + 2*I*c)*log((I*a*d*sqrt((2*A^2 - 4*I*A*B - 2*B^2
)/(a*d^2))*e^(2*I*d*x + 2*I*c) + sqrt(2)*((I*A + B)*e^(2*I*d*x + 2*I*c) + I*A + B)*sqrt(a/(e^(2*I*d*x + 2*I*c)
 + 1))*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/(I*A + B)) - a*d*sqrt((2*A^2 - 4*I*A*B - 2*B^2)/(a*d^2))*e^(2*I*d*x +
 2*I*c)*log((-I*a*d*sqrt((2*A^2 - 4*I*A*B - 2*B^2)/(a*d^2))*e^(2*I*d*x + 2*I*c) + sqrt(2)*((I*A + B)*e^(2*I*d*
x + 2*I*c) + I*A + B)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/(I*A + B)) + 2*sqrt(
2)*((A + 5*I*B)*e^(2*I*d*x + 2*I*c) + A + I*B)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c))*e^(-2*I*d*x
- 2*I*c)/(a*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (A + B \tan{\left (c + d x \right )}\right ) \tan{\left (c + d x \right )}}{\sqrt{a \left (i \tan{\left (c + d x \right )} + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))**(1/2),x)

[Out]

Integral((A + B*tan(c + d*x))*tan(c + d*x)/sqrt(a*(I*tan(c + d*x) + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \tan \left (d x + c\right ) + A\right )} \tan \left (d x + c\right )}{\sqrt{i \, a \tan \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)*tan(d*x + c)/sqrt(I*a*tan(d*x + c) + a), x)